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Abstract 

Positive sequential dependencies occur when the response on the current trial n is 

positively correlated with the response on trial n-1. This was recently observed in a 

Judgment of Frequency (JOF) task (Malmberg and Annis, 2011). A model of positive 

sequential dependencies was developed in the REM framework (Shiffrin & Steyvers, 

1997) by assuming that features that represent the current test item in a retrieval cue carry 

over from the previous retrieval cue.  To assess the model, we sought a set of data that 

allows us to distinguish between frequency similarity and item similarity. Therefore, we 

chose to use a JOF task in which we manipulated the item similarity of the stimuli by 

presenting either landscape photos (high similarity), or photos of everyday objects such 

as shoes, cars, etc (low similarity). Similarity was modeled by assuming either that the 

item representations share a proportion of features or by assuming that the exemplars 

from different stimulus classes vary in the distinctiveness or diagnosticity. The model fits 

indicated that the best way to model similarity was to assume that items share a 

proportions of features. 
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Cognitive testing often assesses the performance on a simple task over the course 

of many test trials. Many models assume the independence of the individual responses. In 

fact, many models must make this assumption to be valid instruments for measuring or 

understanding. That is, the independence assumption is critical for understanding how the 

tasks are performed, and it is required by many statistical tests, including maximum-

likelihood analyses, analyses of variance, etc. (Anderson, 1971). However, there are 

extensively documented cases in the psychological literature where the independence 

assumption does not hold.  

Perhaps the most well known example of a task in which human cognition 

violates the independence assumption is absolute identification. In an absolute 

identification task, the subject classifies stimuli, usually along a single perceptual 

dimension, and the number of stimulus categories is equal to the number of mutually 

exclusive responses. For instance, tones of m different frequencies must be classified 

along an m-point scale by assigning an integer corresponding to one point on the scale to 

each stimulus. Absolute identification requires training - and even then it is difficult. The 

upshot is that errors are made in the classification process, and these errors are non-

random; correlations between the responses given in different intervals or sequential 

dependencies (SDs) are a robust finding (Ward & Lockhead, 1971; Lacouture, 1997; 

Mori, 1989; Mori & Ward, 1995). Positive SDs occur when the current response is 

positively correlated with a previous response (or stimulus), which is known as 

assimilation. For example, consider the response to the current stimulus on trial n, Sn, and 

the response to the previous stimulus value on trial n-1, Sn-1, and the difference between 

successive stimuli, Sn-1 - Sn . As the difference increases, the subjects’ estimate of the 
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current stimulus also increases. Negative SDs or contrast in absolute identification is also 

observed, typically at lags greater than 1 and only when feedback is provided (Ward & 

Lockhead, 1970). 

SDs are also found in episodic memory recognition tasks, including detection and 

confidence ratings, and judgments of frequency (Malmberg & Annis, 2011). Recognition 

is the ability to determine what was previously experienced. Usually, subjects in a 

laboratory experiment study a list of items, and for detection, subjects classify stimuli as 

having been studied or having not been studied. Assimilation is observed when Sn-1 and 

Sn are more likely than chance to be classified as both studied or both unstudied. There 

are other procedures for testing recognition memory, however. Testing recognition 

memory via a Judgment of frequency (JOF) is somewhat analogous to absolute 

identification since it requires a mapping of m classes of stimuli to m responses, where m 

> 2; items are studied various number of times, and the subject responds with the number 

of times the word was presented at study. Unlike, absolute identification subjects require 

no training in order to perform the JOF task, but like absolute identification, the JOF task 

is challenging, and SDs are observed. Assimilation is observed between the current 

response and the previous stimulus and the previous response both when feedback is and 

is not provided (Malmberg & Annis, 2011). Contrast is observed between the previous 

response and current response at lags of 1 to 3 in the absence of feedback.  

 Thus, although the decision structure of absolute identification and JOFs are the 

same, there are obvious and more subtle differences between the tasks. Indeed, the 

pattern of SDs observed in absolute identification and JOFs are different (Malmberg & 

Annis, 2011), and thus models designed for absolute identification do not necessarily 
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generalize to recognition memory tasks. Here, we present the results of an initial 

investigation of the mechanisms underlying SDs in recognition memory. We will present 

a process-model of the JOF task that captures the positive SDs in recognition memory. 

The framework of the model is the retrieving effectively from memory theory (REM, 

Shiffrin & Steyvers, 1997; Malmberg, Holden & Shiffrin, 2004), and like all memory 

models, REM assumes that recognition is based on the outcome of an interaction between 

a retrieval cue and the contents of memory. The retrieval cue is a mental representation of 

the stimulus, and the more similar the cue is to the contents of the memory the more 

familiar it seems. For a JOF, we assume that the greater the familiarity of the stimulus the 

greater the JOF will be that is assigned to it. We will discuss these assumptions in detail 

below.  

A key assumption of the model is that assimilation is the result of a carryover of 

the information used to probe memory from trial to trial. Hence, to the degree that the 

features in the retrieval cue on trial n-1 carryover to the retrieval cue on trial n, the 

information used to probe memory is correlated from trial to trial during JOF testing. 

Another key assumption of the model is that the carryover is the result of lapses in 

attention or vigilance, and therefore the carryover of features does not necessarily occur 

on each JOF trial. Last, the model assumes that the subject is unaware that carryover 

occurs, and therefore the subject fails to discount the cross trial correlations in the 

information gleaned from memory (cf. Huber, Shiffrin, Lyle, & Ruys, 2001). 

In prior modeling of JOFs, the similarity of the stimuli has been shown to be 

critical (Hintzman, Curran, & Oppy, 1992; Malmberg, et al., 2004); since the similarity 

of the stimulus to the contents of memory is positively correlated with the JOF, JOFs are 
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greater on average for items more similar to contents of memory, even when they were 

not studied, than items less similar to the contents of memory. Moreover, noting that the 

stimuli in a recognition experiment may independently vary in similarity on two 

dimensions, distinguishing recognition from absolute identification. In absolute 

identification, the stimuli vary in similarity only along the dimension used to classify 

them at test. For instance, m lines of different length may be classified into m categories 

at test. For the JOF task, not only do the stimuli vary in the number of times that they 

were studied, but they may also vary on other dimensions, such as perceptual or semantic 

characteristics. Thus, we conducted an experiment in which repetitions at study were 

varied and the perceptual/semantic similarity of the stimuli was varied. However, before 

reporting these results, we will describe the model in greater detail. 

A  Model of Judgments of Frequency (JOFs) 

 REM assumes that lexical/semantic traces are represented as vectors of w 

geometrically distributed, features values (Shiffrin & Steyvers, 1997). The environmental 

base rate of feature values is determined by the geometric distribution parameter g. When 

an item is studied, its lexical/semantic trace is activated, and t attempts to store a feature 

to an episodic trace are made. The probability that a feature will be stored on each 

attempt is u*. If the feature is stored, it is copied correctly from the lexical/semantic trace 

with probability c, otherwise the feature value stored is 0. If the feature is not copied 

correctly, then the stored value is drawn randomly from the geometric distribution: 

                j-1
 1.  

where   {   }. The predictions of REM do not hinge on the assumption of geometric 

distribution of feature values. Rather, the geometric distribution is convenient to assume 
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since the single parameter g defines a given distribution: the mean feature value is 1/g 

and variance is (1-g)/g
2
. Three geometric probability mass functions are plotted in Figure 

1. As g increases, the mean feature value increases and the variability of the feature 

values of which items are constructed increases. Thus, when the geometric distribution is 

defined by relatively low values of g, the representations that are created will tend to 

consist of a wider variety of features values, and the mean feature value will be greater, 

compared to when the geometric distribution is defined by a relatively low g value. g 

affects the similarity of the representations. 

 Repetitions. For the JOF task, items are studied one or more times on a long 

study list. There are a number of ways to model item repetitions (Criss, Malmberg, & 

Shiffrin, 2011; Shiffrin & Styevers, 1998). One might assume that a new trace is stored in 

memory or might assume that previously unstored features are added to the prior trace. 

However, REM is constrained by the assumption that more often than not item repetitions 

are encoded by adding previously unstored features to an existing trace. Again there are 

number of different ways to satisfy this requirement, but the simplest model assumes that 

each study repetition results in additional storage attempts to the same trace in memory, 

and since the more complex models do not have an any obvious advantages for the 

present purpose this is the model we chose to implement (Malmberg & Shiffrin, 2005; 

Shiffrin & Steyvers, 1997,1998). We will also ignore in the present simulations the 

effects of the repetition of an item during the course of testing (Malmberg, Criss, 

Gangwani, & Shiffrin, 2012). Hence, when an item is repeated, unstored features, 

represented by 0 values, are overwritten in the event of a successful storage attempt and 
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that existing features are preserved.  Therefore, the probability of storing a feature in 

episodic memory after studying an item r times is  

                         2.  

 JOFs. During single item recognition, the test item’s associated lexical/semantic 

trace serves as the retrieval cue. The retrieval cue is matched in parallel against episodic 

traces stored during study. For each episodic trace, j, a likelihood ratio, λj, is computed: 

              ∏*
                

         
+

    

 

 

   

 3.  

where, njq is the number of non-matching features in j, and nijm  is the number of matching 

features in episodic trace j. The first term of Eq. 2 simply represents the contributions of 

mismatching features to the likelihood ratio, which occur when features are encoded 

incorrectly during study. The denominator of the second term, represents the chance of 

obtaining a match of feature value i, given that the match was obtained by randomly 

sampling that feature value from the geometric distribution defined by g. Likewise, the 

numerator of the second term, represents the chance of obtaining a match for feature 

value i given that it was stored correctly during study. Note that the denominator 

decreases with increases in the feature value, i. Hence, matches of relatively great feature 

values lead to a relatively great likelihood ratio because they are more diagnostic (i.e., 

less likely to have occurred by chance). This produces greater HRs and lower false-alarm 

rates for items generated from the geometric distribution with relatively low g values. 

The log odds are obtained from the average likelihood ratio for the n traces compared to 

the retrieval cue,     
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     (
 

 
∑   

 

   

)  4.  

where n is the number of episodic traces stored during study, are then compared to a 

criterion. For binary old-new recognition, when the log odds are greater than 0, an ―old‖ 

response is given.  

 Decision Model. The JOF decision mechanism proposed by Malmberg, Holden & 

Shiffrin (2004) assumes that the log odds on each trial are compared to a set of decision 

criteria. These criteria are generated according to the equation: 

          , 5.  

where Ck  is the log odds associated with the JOF k, where k = 1…n, and r is a scaling 

parameter. The log odds are compared to the set of criteria. The JOF corresponds to the 

value k associated with the greatest criterion exceeded. If the odds do not exceed any 

criteria, the JOF corresponds to the value k associated with minimum criterion value.  

An Important Distinction: Item Similarity versus Frequency Similarity. The 

dimension on which the JOFs are made is the unidimensional familiarity value,  , 

obtained from the global-matching retrieval process (Eq. 3). The familiarity of adjacent 

test items are correlated to the extent that they were presented a similar number of times 

during the study phase; each condition will produce a distribution over   and the more 

similar the number of times adjacent tests are studied, the greater the overlap of their 

respective distributions and the greater the correlation in the adjacent responses at test. 

We refer to this dimension as frequency similarity. 

The model also predicts correlations among adjacent responses during testing to 

the extent that their episodic representations and retrieval cues are comprised of similar 
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sets of features. Compare this to a typical absolute identification experiment, where the 

stimuli always vary in similarity only along some perceptual dimension, and this variable 

will be positively related among adjacent stimuli only to the extent that the stimuli are 

perceptually similar to each other. In recognition memory testing, however, it is 

important to distinguish between frequency similarity and the similarity with which items 

are represented and the similarity of the items, which we refer to item similarity. The 

representation of two items may be very different (e.g., DOG and TRANSITOR), but the 

information that they elicit from memory would tend to be similar when studied the same 

number of times. Thus, we would expect there to be stronger correlation between the 

JOFs given to items presented similar number of times, even though they are represented 

quite differently, than to an item, say, that was not studied at all.  

Modeling Stimulus Similarity Frequency similarity is modeled by varying the 

number of times an item is presented during study in the manner discussed above. Here, 

we consider two models of item similarity. The first model assumes that a proportion of 

feature values were shared among traces in memory. In order to generate similar traces, a 

vector, P, was filled with feature values according to the geometric process outlined 

above. For each additional vector A, P(Ai = Pi) = s, where i is the index of the element of 

the vector. Thus, as the parameter s increases, the proportion of features shared between 

two representations increases. The second model assumed that the distribution of feature 

values differed in terms of the g parameter. The g parameter models the environmental 

base rate of feature values. Note that according to Eq. 1, low base rates correspond to 

highly distinctive or diagnostic features whereas high base rates generate feature values 

that are less diagnostic. In terms of computation, as the g parameter increases, the 
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distribution of feature values becomes positively skewed, as shown in Figure 1. The key 

distinction between these two models is that the latter model assumes that less similar 

stimuli not only overlap less in the representations, but less similar representations are 

also comprised of more diagnostic or uncommon features and are more distinctive 

representations (Malmberg, Steyvers, Stephens, & Shiffrin, 2002; Shiffrin & Steyvers, 

1997).  Note that these models need not be mutually exclusive and we will therefore also 

consider the more complex model in which both s and g are used to create systematic 

variability in item similarity. 

 Assimilation. We refer to this model of assimilation as the carry over model. It 

shares a key assumption with several models of absolute identification; the information 

on which a decision is made on trial n-1 is not independent of the information in which 

the decision on trial n is made (Brown, Marley, Donkin, & Heathcote, 2008; Petrov & 

Anderson, 2005; Stewart, Brown, & Chater, 2005; Triesman & Williams, 1984). More 

specifically, we speculate that the degree to which information carries over from trial to 

trial during the course of testing may fluctuate due to the ability of the subject to maintain 

an optimal level of vigilance when performing the task. On each trial, there is a 

probability, 1-a, that a carryover process occurs in which each feature from the retrieval 

cue on trial n carries over to the retrieval cue on trial n+1 with probability b. Therefore, 

on each trial with probability a, no carryover process occurs. For example, if a and b 

were both equal to 1, no carryover would occur because the system would essentially 

―refresh‖ itself on each trial. Therefore, as a increases, the number of trials in which carry 

over occurs decreases. When the refresh parameter is equal to 1, the model reverts to the 

Shiffrin and Steyvers, (1997) model.  
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 Another key assumption made explicitly here but tacitly apart of other models is 

that the subject fails to discount the information carrying over from trial-to-trial (cf. 

Huber, Shiffrin, Lyle, & Ruys, 2001). The failure to discount the carry over produces 

assimilation. For example, imagine that a subject carries over all the features from trial 1 

to trial 2. They then globally match the features in the retrieval cue to the contents in 

memory (see Equation 1) and generate an odds value (see Equation 2). In this case, the 

odds value on trial 2 is equal to the previous odds value on trial 1. Thus, the subject 

makes the same response on trial 2 as he or she did on trial 1. Let us say, on trial 3, 

however, the subject refreshes their retrieval cue and does not carry over any features 

from trial 3. In this case, the subject is free from any influence of previous trials and 

makes a response that is independent of all other responses. Therefore, if the subject 

refreshes their retrieval cue on every trial, all responses would be independent. This is the 

assumption made in the original Shiffrin and Steyvers (1997) model and would only 

occur in the current model when the refresh parameter takes on the value of 1.  

Experiment 

 The carry over model creates positive sequential dependencies in recognition 

memory testing because the information on which a decision is made on from trial to trial 

is correlated. However, it is unclear whether the carry over model can provide a 

qualitatively accurate account for assimilation among JOF responses. To assess the carry 

over model, we sought a reasonably complex and challenging set of data that allows us to 

distinguish between frequency similarity and item similarity. For this reason, we 

presented subjects with items that were either high or low in item similarity with photos 

of landscapes (e.g. mountains, sunsets, fields etc.) corresponding to high similarity items, 
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and photos of everyday random objects (e.g. shoes, chairs, cars etc.) corresponding to low 

similarity items. Figure 2 shows a sample of the items presented. To manipulated 

frequency similarity, the items in both conditions were presented from 1 to 6 times during 

study, and JOFs were collected to test recognition memory. 

Method 

Subjects. One-hundred-and-ten undergraduate students at the University of South 

Florida participated in exchange for course credit. 

Design and Materials. Repetitions were manipulated within subjects and within 

lists, and similarity was manipulated between subjects. Similarity of the stimuli were 

manipulated by presenting either landscape photos (high similarity), or photos of 

everyday objects such as shoes, cars, etc (low similarity). The 240 color object images 

consisted of everyday inanimate objects such as shoes, chairs, motor vehicles, clocks, 

food, kitchenware, candles etc., while the 240 color landscape images consisted of 

sunsets over beaches, mountains, parries, etc. Four lists of 60 images each were studied. 

The images were drawn randomly and anew for each subject from the 240 images 

described above. Within each list, 10 images were presented for 1.0 s, either once, twice, 

three, four, five, or six times with at least 1 intervening image between each repetition. 

Each test list consisted of the 60 images presented at study. 55 subjects completed the 

object condition, and 55 subjects completed the landscape condition. 

Procedure. Subjects studied four lists of images and performed a math task after 

each. The math task consisted of mentally adding digits for 30-seconds. Upon completion 

of the math task, each image from the study list was presented one at a time, and the 
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subject’s task was to indicate how many times the word was studied by typing the 

appropriate number into the computer using the numerical keys 1-6. 

Results 

 Proportion of Correct Responses. A 2 (stimulus type: objects vs. landscapes) x 

6 (number of presentations) omnibus ANOVA was conducted with stimulus type as a 

between subjects factor and the number of presentations as a within subjects factor. The 

left panel of Figure 3 shows the proportion of correct responses was greater in landscape 

condition than in the object condition, F(1,108) = 122.57, MSE = .03, p  < .0005,   
  = 

.53. There was a main effect of the number of presentations on accuracy, F(5,540) = 

104.10, MSE = .161, p < .0005,   
  = .49, and the stimulus type interacted with the 

number of presentations, F(5,540) = 8.19, MSE = .02, p < .0005,   
  = .07. To investigate 

the interaction, a trend analysis was conducted. The linear trend for the object condition 

was significant, F(1, 54) = 56.74, MSE = .05, p < .0005,   
  = .51, as well as in the 

landscape condition, F(1,54) = 81.37, MSE = .03, p < .0005,   
  = .60. The quadratic 

trends for the object condition, F(1,54) = 138.47, MSE = .05, p < .0005,   
  = .72, and 

landscape condition were also significant, F(1,54) = 27.12, MSE = .03, p < .0005,   
  = 

.33. As the number of presentations increases, the proportion of correct responses 

decreases in a nonlinear fashion until the number of presentations equals 6, where the 

proportion of correct responses again increases. However, the characteristic trough for 

middle range of frequencies was shallower in the landscape condition than in the object 

condition.  

 Mean JOFs. The calibration curve in the middle panel of Figure 3 shows a main 

effect of stimulus type on the mean JOF, F(1,108) = 19.33, MSE = 1.95,  p < .001,   
  = 
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.15. There was a main effect of the number presentations on the mean JOF, F(5,540) = 

527.71, MSE = .14, p < .0005,   
  = .83, and a stimulus type x number of presentations 

interaction, F(5,540) = 98.67, MSE = .14, p < .0005,   
  = .48. Thus, the subjects in the 

landscape condition tended to, on average, overestimate low stimuli and underestimate 

high stimuli more often than those subjects in the object condition.  According to a linear 

trend analysis, the mean JOF in the object condition increased with increases in the 

number of presentations, F(1,54) =  525.08, MSE = .69, p < .0005,   
  = .91. The 

quadratic trend was also significant, F(1,54) = 55.08, MSE = .69, p < .0005,   
  = .51. 

Mean JOFs increased linearly with increases in the number of presentations in the 

landscape condition as well, F(1,54) = 234.77, MSE = .25, p <.001,   
  = .81; however, 

the quadratic trend was not significant, F < 1. The calibration curves suggest that subjects 

had more difficulty discriminating the number of times that landscapes were presented 

than the number of times the objects were presented. 

JOF Accuracy. To measure JOF accuracy, d’i, i+1was calculated for each stimulus 

i and i+1 (Luce, Nosofsky, Green, & Smith, 1977), which measure the ability of the 

subject to discriminate items that are adjacent to each other on the frequency dimension 

in manner independent of range restrictions or response bias. For instance, d’2,3 is 

measure of the ability of the subject to discriminate between items presented two times 

and items presented three times.  The right panel of Figure 3 plots d’i, i+1 as a function of 

the number of presentations, I, and the stimulus condition.  A 2 (stimulus type: objects vs. 

landscapes) x 5 (number of presentations i) omnibus ANOVA revealed a main effect of 

the stimulus type, F(1,108) = 101.30, MSE = .30, p < .0005,   
  = .48, and number of 

presentations i , F(4,432) = 21.08, MSE = .14, p < .0005,   
  = .16, on d’i, i+1. JOFs were 
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more accurate for objects than landscapes. Moreover, while d’i, i+1 steeply declined with 

increases in the number of presentations in the object condition, a flat curve was observed 

in the landscape condition, F(4,432) = 18.29, MSE = .14, p < .0005,    
  = .15. Comparing 

the right panel to the left panel of Figure 3, one therefore concludes that much of the bow 

observed in the proportion of correct responses in the landscape condition is due to range 

restrictions affecting biases in decision making, whereas the bow observed in the object 

condition is associated with changes in the ability to discriminate between the number of 

times that the objects were presented.   

 Assimilation. The left panel of Figure 4 plots the mean error on trial n as a 

function of the current stimulus and prior response. A 2 (stimulus type) x 6 (current 

stimulus) x 6 (previous response) omnibus ANOVA was conducted. There was no main 

effect of the stimulus type on the mean error on trial n, F < 1. There was a main effect the 

current stimulus, F(5,265) = 322.19, MSE = 1.01, p < .0005,   
  = .42; as the number of 

times a stimulus was studied decreased, the overestimate of the JOF increased. There was 

also a main effect of previous response on the mean error on trial n, F(5,265) = 36.88, 

MSE = .43, p < .0005,   
  = .41; as the JOF given on the prior trial increased, the JOF on 

the current trial tended to increase. That is, positive SDs (i.e. assimilation) were observed 

toward the previous response. There was a significant interaction between the current 

stimulus value and the stimulus type, F(5,265) = 38.66, MSE = 1.01, p < .0005,   
  = .42. 

This reflects the overall increase in accuracy in the object condition versus the landscape 

condition. There were no other significant interactions.  

 The right panel of Figure 5 plots the mean error on trial n as a function of the 

current and prior stimulus. A 2 (stimulus type) x 6 (current stimulus) x 6 (previous 
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stimulus) omnibus ANOVA was conducted. There was a main effect of stimulus type on 

the mean error on trial n, F(1,89) = 14.85, MSE = 12.84, p < .0005,   
  = .14, such that the 

overall mean error in the object condition, (M = -.24), was higher than the landscape 

condition, (M = -.72). There was a main effect of the number of presentations, F(5, 445) 

= 728.18, MSE = .89, p < .0005,   
  = .89, and a main effect of the prior stimulus on the 

mean error on trial n, F(5,445) = 6.02, MSE = .42, p < .0005,   
  = .06. There were no 

significant interactions.  

 The previous response and the previous stimulus are confounded (Jones, Love and 

Maddox 2006). One simple way to decorrelate the previous stimulus with the previous 

response is to hold the previous stimulus constant and only let the previous response 

vary. In order to make sure there would be a sufficient amount of data to conduct the 

analysis we binned the responses such that responses 1 and 2, 3 and 4, and 5 and 6 would 

each constitute a bin. We conducted a 2 (stimulus type) x 3 (current stimulus) x 3 

(previous stimulus) x 3 (previous response) omnibus ANOVA in order to account for 

these effects. We again found no main effect of the stimulus type, F(1,25) = 3.99, MSE = 

3.99, p = .057,   
  = .14, a main effect of the current stimulus, F(2,50) = 257.47, MSE = 

5.50, p < .0005,   
  = .91, a main effect of the previous response, F(2,50) = 34.22, MSE = 

.79, p < .0005, and no main effect of the previous stimulus, F < 1. There was a previous 

stimulus by current stimulus interaction, F(4,100) = 3.13, MSE = 1.61,   
  = .11, such that 

as the previous and current stimulus value increased, the error on the current trial became 

more negative. Thus, when the previous stimulus and response are decorrelated, negative 

SDs toward the previous stimulus were observed. 
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Modeling Results 

 Fitting Methods. In order to test whether differences existed in parameter values 

across conditions, a bootstrap method was used. In each bootstrap procedure, the model 

was fit to the data and parameter estimates were obtained. Using these parameter 

estimates, data was then generated from the model itself. The model was then fit to this 

data and new parameter estimates were obtained. The simulations were run on USF’s 

Beowulf Cluster. Each computer on the cluster had a either a Xeon X-series processor or 

an Opteron 2000-series processor and 16 to 24 gigabytes of memory.  

 In each bootstrap, we independently varied either g, s or a, between the stimulus 

conditions. All other parameters were fixed (see Table 1). In this sense, the fits of that we 

report are not necessarily the best fits possible. However, since the majority of the values 

used for the fixed parameters were determined a priori from the results of great deal of 

other simulation previously reported (e.g., Malmberg, et al., 2004; Shiffrin & Steyvers, 

1997) the results can be viewed as being relatively parsimonious.  We should also note 

that the parameters for the decision model were fixed, as we were interested in only 

assessing the ability of the carry over model to account for assimilation in JOF testing 

and there was no obvious a priori reason to believe that the decision parameters would 

vary between stimulus conditions. We have more to discuss on this matter in General 

Discussion. 

g, s, and  a were allowed to vary between 0 and 1, except for the g parameter, 

which was only allowed to vary between .1 and 1. This was done to avoid division by 

zero in equation 1. The downhill simplex method (Nelder & Mead, 1965) was used to 

estimate the global maximum of the likelihood function. Because the data were averaged, 
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we assumed that the data generating process was Gaussian in nature and all data points 

were independent. Therefore, the normal likelihood function was appropriate.  
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Thus, the log-likelihood function was a function of the sample size, and the sum of the 

squared error (Glover, & Dixon, 2004). Because REM is a stochastic model it was 

unlikely that simplex procedure would converge. Thus, to ensure a stopping point for the 

simplex procedure, a maximum of 100 objective function evaluations were allowed. Each 

evaluation consisted of 50 simulated subjects which completed 5 lists. After the 

parameter estimates,  ̂, were generated from the simplex method, 50 bootstrap samples 

were generated using  ̂. The model was then fit to each of the bootstrap samples in order 

to generate a distribution of parameter estimates  ̂ .  

 In order to evaluate the goodness-of-fit, the Likelihood Ratio Test (LRT) was 

used according to equation 8.  

                                      . 9.  
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The   statistic is distributed with K degrees of freedom where K refers to the number of 

extra parameters in the saturated model.           is the log-likelihood of the model in 

question, and            is the log-likelihood of the saturated model.  

 Noting the drawbacks of Null Hypothesis Significance Testing (Wagenmakers, 

2007), Akaike’s Information Criterion (AIC; Akaike, 1973) and the Bayesian Information 

Criterion were calculated (BIC; Schwarz, 1978). 

                  10.  

    is the log-likelihood and K is the number of free parameters. 

                     11.  

The first term represents the negation of the log-likelihood, and the second term is 

a penalty term, where K is the number of free parameters and N is the number of 

observations. The model with the lowest BIC is the model with the highest posterior 

probability. The BIC does not provide a measure of anything by itself, rather it needs to 

be compared to another BIC. These differences can be better interpreted by calculating 

the ratio of the posterior probabilities to obtain the Bayes factor (Kass & Raftery, 1995): 

   
    |  

    |  
  12.  

The Bayes factor is a function of the BIC because         |       . Therefore, 

        [         ]   13.  

Dividing both sides of the equation by -2 and cancelling the log function, equation 12 can 

be rewritten as 

      (
         

 
)   14.  
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Thus, the Bayes factor was approximated by equation 13. The Bayes factor was then used 

to calculate the posterior probability of each model given the available pool of models 

(Equation 15).  

   
  

∑    
  15.  

Bootstrap Results. The results of the bootstrap procedure are shown in Tables 2 

through 6. In the first simulation, either g, or a, or s was varied. Table 2 shows that the g 

parameter significantly increased from the object (M = .362, SD = .009) to the landscape 

condition (M = .409, SD = .008), t(49) = 98.52, p < .05. Thus, the model predictions were 

in accordance with intuition; the distinctiveness of the features decreased from the object 

to the landscape condition. Likewise, the s parameter increased from the object (M = 

.431, SD = .034) to the landscape condition (M = .495, SD = .018), t(49) = 11.94, p < .05. 

The a parameter decreased from the object (M = .777, SD = .009) to the landscape 

condition (M = .567, SD = .008), t(49) = -123.14, p < .05. Thus, the model suggests an 

increase in the number of trials that the carryover process occurred on, from the object to 

landscape condition. 

 In order to account for the possibility that a combination of varying parameter 

values would provide a better fit to the data, we considered the models in which the g and 

a parameters were allowed to simultaneously vary (Table 3). A distribution of parameter 

estimates from a bootstrap procedure was again generated. The g parameter was shown to 

significantly increase from the object (M = .421, SD = .004) to the landscape condition 

(M = .444, SD = .002), t(49) = 37.62, p < .05. The a parameter was shown to 

simultaneously decrease from the object (M = .889, SD = .012) to the landscape condition 

(M = .639, SD = .004), t(49) = -113.46, p < .05. Thus, similar model predictions were 
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observed in that the proportion of trials in which carryover occurred increased from the 

object to the landscape condition.  

 We also varied both the s and a parameters simultaneously and obtained the 

parameter estimates from the bootstrap procedure described above (Table 4). The s 

parameter significantly increased from the object (M = .285, SD = .070) to the landscape 

condition (M = .584, SD = .008), t(49) = 29.90, p < .05 and the a parameter significantly 

decreased from the object (M = .861, SD = .008) to the landscape condition, (M = .491, 

SD = .012), t(49) = -195.26, p < .05. Thus, the model predictions are in accordance with 

the results from the bootstrap procedure in which each parameter was varied 

independently. That is, the similarity of feature values increased from the object to the 

landscape condition, and the proportion of trials in which carry over occurred increased 

from the object to the landscape condition.  

 Table 5 shows the results of the bootstrap in which g and s were varied 

simultaneously. The bootstrap revealed that the g parameter increased from the object (M 

= .396, SD = .003) to the landscape condition (M = .442, SD = .005), t(49) = 61.41, p < 

.05, while the s parameter increased from the object (M = .546, SD = .014), to the 

landscape condition (M = .593, SD = .014), t(49) = 16.93, p < .05. Thus, while the 

distinctiveness of features decreased from the object to the landscape condition, the 

overall similarity of traces in memory increased.  

 Finally, we simultaneously varied all parameters of interest: s, g, and a. The 

results are shown in Table 6. This model showed a similar pattern in that the a parameter 

decreased from the object (M = .993, SD = .005) to the landscape condition (M = .609, 

.026), t(49) = 98.70, p < .05, and the s parameter increased from the object (M = .362, SD 
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= .051) to the landscape condition (M = .622, SD = .004), t(49) = 34.84, p < .05. 

However, the g parameter increased from the landscape (M = .433, SD = .005) to the 

object condition (M = .453, SD = .002), t(49) = 23.91, p < .05.  

The counterintuitive result from the final simulation is worth discussing at greater 

length. Note, that the simulation suggests that the landscapes were MORE distinctive 

than the objects when measured by g but less distinctive when measured by s. This result 

raises red flags. Moreover, when the simpler models were simulated, the results 

consistently suggested that the landscapes were LESS similar than the objects when 

measured by both g and s, which is what intuition tells us should be the case. Hence, our 

suspicion was that the complexity of the a, g, s model is unwarranted, and the 

counterintuitive parameter estimates that it produced were the result of over fitting (Pitt 

& Myung, 2002). If so, we suspected that despite the awkward parameterization of the a, 

g, s model, it would provide a superior quantitative fit of the data, which we explored 

next.  

Model Fits and Selection 

Overall quality of fits. The parameter estimates from the different simulations 

are listed in Tables 2 through 6. Quantitative fits were calculated as described above, and 

various statistics obtained from the ―best‖ fits of each model are shown in Table 7. The 

best fits of the data were obtained from the carryover models in which the amount of 

carryover was free to vary between conditions. According to these models, attention 

fluctuates at test, and when vigilance is reduced there is a carryover of a proportion of the 

features from the retrieval cue used to probe memory on trial n-1 to the retrieval cue used 

to probe memory on trial n.  The variability in the attention (a) parameter accounts for the 
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differences in the magnitude of the SDs observed between the stimulus conditions, and 

all the bootstrap simulations indicate that that less carryover occurred in the object 

condition than in the landscape condition. Thus, the most accurate models of recognition 

that we have considered take into account the sequential dependencies observed in JOF 

testing, and by taking into account these SDs, the models are better able to account for 

differences between the stimulus conditions. The result is not as trivial as may seem since 

the stimulus conditions were constructed in manner that a priori would have been thought 

to differ along the stimulus similarity dimensions (g and/or s dimensions), but the 

differences in the amount of carryover between stimulus conditions characterized all 

three of the best fitting models.  

Of the three carryover models, the a, g, s model and a, s model provided the best 

quantitative accounts, suggesting that there was differences in the nature of the stimuli 

themselves in addition to the differences in the amount of carryover between stimulus 

conditions. Since the two best fitting models differ in complexity, we inspected the 

Bayesian Information Criterion (BIC; also Table 7). The model in which a, g, and s were 

varied simultaneously obtained a slightly lower BIC value than the a, s model, indicating 

that even when the complexity of the models is taken into account, the a, g, s model is 

preferred. In addition, the posterior probability of 1.0, denoted by w in Table 7, indicates 

that the a, g, s model by far and away is the most likely model to have generated the data.  

All these statistics are informative, but it is critically important that the parameter 

estimates obtained from the simulations also make sense. Note, the parameters estimated 

obtained from the a, g, s model suggests that the landscapes are less distinctive than the 

objects. This is difficult to reconcile with a casual inspection of the stimuli (see Figure 2). 
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This is a rather peculiar state of affairs, compounded by the fact that the posterior 

probability clearly favors the a, g, s model over the a, s model. However, the advantage 

for the a, g, s model may be more apparent than real. For example, both the a, g, s model 

and the a, s model yield similar qualitative fits (see Figures 6 through 9). Moreover, the 

LRT revealed the a, g, s model and a, s model were unable to provide an adequate overall 

fit to the data, G
2
(163) = 762.71, p < .05, and G

2
(164) = 793.44, p < .05, respectively. On 

the other hand, it is unclear how much to make out of the LRT analysis, since when the 

number of degrees of freedom is high (that is, when there are many more data points than 

free parameters), even small departures of the fit from the data become accentuated in the 

LRT. Although there is no formal means for combining the outcome of a series of 

simulations with intuition (cf. Shiffrin & Nobel, 1995), the counterintuitive nature of the 

a, g, s model and its additional complexity, suggests that the slight quantitative advantage 

for the a, g, s model over the a, s model is due to overfitting (Myung & Pitt, 2000). We 

therefore, conducted a series of more fine-grained analyses of the model fits to different 

subsets of the data. 

Landscape versus Object Stimulus Conditions. Note these analyses are on the 

fits obtained from simulations of either all of the object data or all of the landscape data. 

Hence, although we are assessing the capability of the model to account for various 

subsets of the data within each stimulus condition, the fits on which the following 

statistics are derived are constrained by either all of the object data or all of the landscape 

data. In this sense, the following assessments are overly conservative in judging the 

models’ capacities to account for the fine-grained details of the data. On the other hand, 
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the data themselves are not independent, as the SDs clearly indicate, and therefore it 

seemed reasonable to maintain the additional constraints.  

We first looked at how the models fit the overall landscape data. Both models 

make similar qualitative predictions (see Figures 6 through 9). Although both the a, g, s 

model and a, s model were unable to quantitatively fit the landscape data, G
2
(80) = 

284.58, p < .05, and  G
2
(81) = 259.19, p < .05, respectively, we were nevertheless 

interested in whether one model was able to provide a ―better account‖ of the landscape 

data than the other. Accordingly, we computed the BIC for each of the models and found 

the a, s model had a lower BIC (7827.86) than the more complicated a, g, s model (BIC = 

7858.43), and the a, s model was more likely to have generated the landscape data (w = 

1.0). We next analyzed the fits of each model to the object data. Again, both the a, g, s 

model and a, s model were unable to fit the object data, G
2
(80) = 478.13, p < .05, and 

G
2
(81) = 534.25, p < .05, respectively. The BIC of the a, g, s model was 8682.46 while 

the BIC of a, s model was 8733.25, and the a, g, s model was much more likely to have 

generated the object data (w = 1.0). Thus, while the a, s model had a higher posterior 

probability for landscapes, the a, g, s model had a larger posterior probability for objects. 

This suggests that the superior - but rather peculiar - fit of the a, g, s model is due to 

overfitting the object data. 

Percent Correct Responses. To assess the strengths and weaknesses of the 

different models, we next considered how each model faired within each subset of data in 

the landscape and object conditions. Both models did a reasonable job at fitting the 

characteristic bow effect in the landscape and object conditions, and both models 

predicted increased proportion correct in the object condition (see Figure 6). There are, 
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however, several aspects of the fit of the proportion of correct responses as a function for 

frequency to note. First, neither the a, s, or a, g, s model fit the object percent correct 

data, G
2
(4) = 4.35, p < .05, and G

2
(3) = 2.86, p < .05, respectively. Comparing the two 

fits, the a, s model has a more difficult time predicting the effect of the stimulus when the 

repetitions of the items was low in the object condition, whereas the a, g, s model handles 

these data better. Although the a, g, s model appears to fit the object bow curve data 

slightly better, this advantage comes at the price of increased complexity. We therefore 

calculated the BIC for each model given the object bow curve data. The BIC obtained 

from the a, g, s model was 629.93, while the a, s model had a BIC of 627.41. Moreover, 

the a, s model had a greater posterior probability (.779) for the object bow curve data 

compared to the a, g, s model (.221). For the landscape bow curve data, the a, s model 

fits the proportion of correct responses as a function of frequency better for low stimulus 

values, while the a, g, s model does a better job for larger stimulus values. Although the 

qualitative advantage of either model is not readily apparent via the ―eyeball test‖, the a, 

s model was able to fit the landscape bow curve data, G
2
(4)

 
= .256, p > .05, while the a, 

g, s model was not, G
2
(3) = .60, p < .05. In addition, the posterior probability of the a, s 

model, w = .898, was much higher than the a, g, s model, w = .102. Thus, the a, s model 

was much more likely to have generated the bow curve data than the a, g, s model.   

Thus, the a, s model is the winning model for both the object and landscape bow 

curve data according to our Bayesian analysis. Whatever advantages the a, g, s model has 

in its goodness of fits appear to be due to overfitting. To make some conclusions about 

the departure of the models from the data, it is worth noting a couple of things. First, the 

both models are under-predicting the effect of the stimulus when at relatively low levels 
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of frequency. Second, we have not allowed the models to vary between stimulus 

conditions in terms of their decision bias. Third, the percent correct measure confounds 

the ability of to discriminate along the frequency dimension and bias due to range 

restrictions (Luce et al., 1982). Therefore, in order to understand why the models under 

consideration that do not vary in bias between stimulus conditions, it would be useful to 

assess them against a measure that provides a more accurate determination of the ability 

to discriminate between levels of frequency. 

JOF Accuracy. Why is the a, g, s model overfitting the data? Note that the 

measure proportion correct confounds accuracy with bias (Luce et al., 1982), and that 

bias was not allowed to vary between the stimulus conditions. Therefore, this lack of 

flexibility may be the source of some of the problems the models have in fitting 

proportion of correct responses as a function of frequency. Therefore, we fit the models 

to the data plotted in Figure 7 in which accuracy, d’i, i+1 , is a function of stimulus type 

and the number of presentations. Here, we see both models better predict the stimulus 

effect on accuracy over the ranges of number of presentations.  

That having been said, one might ask, ―How well are the models fitting the 

accuracy data?‖ While neither of the models were able to quantitatively fit the object d’i, 

i+1 curve (both p’s <.05, see Figure 7), the a, g, s model had a larger posterior probability, 

(w = .970), than the a, s model, (w = .030). The a, s model, on the other hand, was more 

likely to have generated the landscape accuracy function, (w = .965), than the a, g, s 

model, (w = .035). More importantly, note that that accuracy is quite low in the landscape 

condition, and it is poorer than the accuracy in the object condition. Yet, the a, g, s model 

parameter estimate indicates that the landscapes are more distinctive than the objects. The 
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a, g, s model is compensating for the a, s model’s adequate fits of the low frequency data 

in the object condition by making all of the objects relatively less distinctive. Less 

distinctive stimuli lead to lower levels of familiarity, and hence items are more likely to 

be judged to have been studied a relatively few numbers of times. Therefore, it again 

appears that varying the g parameter in the a, g, s model is serving as a proxy for a 

change in decision bias between stimulus conditions. That is, variability in g is allowing 

the underlying distribution of familiarity values to shift between stimulus conditions in a 

manner that mimics a shift in response bias. This allows for a better account of the 

stimulus effect on the proportion correct (in Figure 6), albeit in an inappropriate manner, 

and therefore the apparent qualitative advantage for the a, g, s model is due to overfitting. 

This analysis suggests that the major source of the departure of the model from 

the accuracy data is in the model of the repetitions or frequency similarity, and not the 

model of sequential dependencies. Both the a, s and a, g, s models are underpredicting 

the ability of the subject to discriminate between items presented 4, 5, and 6 times 

because of the overly simplified model of encoding that we assumed. Accordingly, every 

time an item is repeated, features are accumulated in the trace stored when the item was 

first presented. Moreover, inaccurately encoded features are never corrected on later 

presentations. Relaxing either or both of these assumptions would allow the model to 

predict greater differences in the mean familiarity values of the items presented relatively 

frequently. We have addressed these possibilities in a formal manner elsewhere (Criss et 

al., 2011; Malmberg, et al., 2004). However, the price would be a more complex model 

of encoding, and since our primary concern is assessing the SDs in recognition testing, 

we chose not to introduce unnecessary complexities for the time being. 
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Sequential Dependencies. The carryover of features from one retrieval cue to the 

next on some trials is the source of positive SDs in the model. Since a robust pattern of 

SDs was found in both conditions, it seems almost trivially important that the carryover is 

important. What is critical to note is that in the present model fits, the predictions came 

from models in which a was free to vary between stimulus conditions. In those models in 

which a did not vary, it was set to a modest value (see Table 1) determined to provide a 

reasonable account of all of the data during a preliminary simulation. Thus, these fits are 

being used to determine whether variability in carryover between stimulus conditions 

provides a better account of the data than a model in which a constant amount of 

variability is assumed for both stimulus conditions.  

The top panels of the Figure 8 show both models yield similar qualitative 

predictions for assimilation towards the previous responses in the landscape condition. 

The a, s model does slightly worse in the object condition, as it overestimates the error 

for low repetition stimuli. However, for high repetition stimuli, both models make a 

similar underestimation. Quantitatively, the LRT revealed the a, s model and the a, g, s 

model both deviated significantly from the response assimilation data in the landscape 

condition, G
2
(34) = 162.08, p <.05, and G

2
(33) = 112.13, p <.05, respectively. The BIC 

and resultant posterior probability for the a, g, s model for the landscape response 

assimilation data was lower (BIC = 1926.14, w = 1.0) than for the a, s model (BIC = 

1918.80, w < .0005). Hence, the more complex a, g, s model provides a better account of 

the positive sequential dependencies observed in the landscape condition, and it is more 

likely to have generated the data than the a, s model. However, note that in order to 
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generate this superior fit, the a, g, s model must assume that landscapes are MORE 

distinctive than objects. 

The bottom panels of Figure 8 plot the fits of the models to the response 

assimilation data for objects, and the a, s model appears to fit the pattern of assimilation 

slightly better than the a, g, s model. However, both the a, s and a, g, s models failed to 

quantitatively fit the object response assimilation data, where, G
2
(34) = 221.08, p < .05, 

and G
2
(33) = 232.16, p < .05, respectively. The a, g, s model is having difficulty 

predicting response assimilation in the object condition because of the large proportion of 

trials in which the retrieval cue is ―refreshed‖ and no carry over occurs. This is due to the 

high value of a parameter estimate. Quantitatively, this is reflected in the lower posterior 

probability of the a, g, s model, (w = .001), while the posterior probability of the a, s 

model was .999. Hence, the simpler a, s model provides a better account of the positive 

sequential dependencies observed in the object condition, and it is more likely to have 

generated the data than the a, g, s model. 

The top panels of Figure 9 show the fits of the model to the error plotted as a 

function of the previous stimulus value for the landscape condition. The quantitative 

model fits significantly deviated from the saturated model for the a, g, s model G
2
(33) = 

163.03, p < .05, and a, s model G
2
(34) = 162.08. While both models show a reasonable 

qualitative fit for this subset of data, the a, s model qualitatively captures the overall error 

magnitudes for each stimulus value better than the a, g, s model. This fact is reflected in 

the BIC values. For this particular data subset, the a, s model had a BIC of 4698.57 while 

the a, g, s model had a BIC of 4774.80 which yielded a much higher posterior probability 

for the a, s model (w = 1.0). 
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The bottom panels of Figure 9 show the model fits to the mean error on trial n as a 

function of the previous stimulus value for the object condition. Both models 

qualitatively predict the absence of assimilation towards the previous stimulus value. 

However, both models were unable to quantitatively predict this subset of the data, (p < 

.05 for both models). The a, s model overestimates the error magnitude of low and high 

repetition stimuli more so than the a, g, s model. In addition, the a, g, s model was clearly 

the quantitative winner; it had a lower BIC than the a, s model (4201.70 vs. 4252.72) and 

a higher posterior probability (w = 1.0).  

In summary, the a, s model was more likely to have generated the landscape data, 

but the a, g, s model was more likely to have generated the object data. Again, it appears 

that a, g, s model is fitting the data better due to a variability in g serving as proxy for 

variability in decision bias between stimulus conditions. 

Similarity versus Distinctiveness. We have considered models in which 

variability in the overlap of features between stimulus conditions is modeled by changes 

in s, the similarity parameter, and g, the distinctiveness parameter in REM. The model 

allowing both s and g to vary between stimulus conditions provides superior fits of the 

data. According to the Bayesian analyses that we conducted, the a, g, s model almost 

certainly generated the data from our experiment given the models that we considered. 

However, the variability in g comes at the cost of counterintuitive parameter estimates 

that suggest that g is standing in place for changes in response bias. Here, we conducted a 

similar Bayesian analysis, but we did not include the a, g, s model in the competition.  

The question was, did one model provide a better account of the overlap in features 

between stimulus conditions? The results are presented in Table 8. The a, s model 



www.manaraa.com

 

31 
 

provided the best quantitative account of the data as far as being more likely to have 

generated the data than the a, g model. 

General Discussion 

We described a model of positive sequential dependencies that assumes 

information from the retrieval cue may be carried over and combined to form the retrieval 

cue used to probe memory on next recognition trial. The model is an extension of a JOF 

model used to account for the interactions of normative word frequency, item similarity, 

and repetitions observed in recognition testing (Malmberg et al., 2004), which assumed 

that word-frequency was correlated with the distinctiveness of the features used to 

represent words (Malmberg, Steyvers, Stephens & Shiffrin, 2003; Shiffrin & Steyvers, 

1997), and that item similarity is varied by manipulating the proportion shared features 

among items constructed from a given base rate distribution of feature values.  

In the present experiment, we manipulated the nature of the stimuli used to test 

recognition memory in order to assess the ability of the model to account for positive SDs 

in JOFs. The stimulus manipulation is provocative within the framework of the carryover 

model. One question was whether the effect of the inter-item similarity manipulation 

could be captured simply by variability in the carryover of features used to probe memory 

at test, the same mechanism used to produce positive sequential dependencies. That is, 

could we capture the differences in the stimulus conditions by simply accounting for the 

differences in the SDs? On the other hand, it was unclear whether inter-item similarity 

should be modeled by varying the overlap of the features used to represent the items or 

whether the similarity of the items should be varied in terms of their distinctiveness. 

Therefore, we also used the model to determine whether our stimulus manipulation 
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would be best characterized by a change in item distinctiveness of item similarity and 

whether the nature of the stimuli affected the SDs that were observed. 

 According to all of the best fitting models, there was variability in the amount of 

the carryover between stimulus conditions such that more carryover occurred in the 

landscape condition than in the object condition. In addition, the simulations indicated 

that the best way to model the difference in the degree to which the objects and 

landscapes overlap in terms of their features was to generate items stochastically from a 

categorical prototype rather than by varying the base rate distribution from which the 

features were drawn. In fact, models in which the distinctiveness of the features was 

varied between stimulus conditions produced the worst fits and at times led to misleading 

interpretations of the data. 

 It is interesting to note that this may be the first finding to indicate that vigilance 

or attentional control during testing is influenced by the nature of the test stimuli. There 

are, of course, several models that assume that the nature of stimuli affect the allocation 

of attentional resources at study (DeCarlo, 2002, 2007; Estes & Maddox, 1997; Howard, 

Bessette-Symons, Zhang, Y William J. Hoyer, 2006; Malmberg & Murnane, 2002). For 

instance, several models assume that rare words attract more attention than common 

words when they are studied (Malmberg & Nelson, 2003 for a review). However, the 

pattern of SDs that we observed cannot be explained by fluctuations in the attention 

during study, since the order in which items were tested was determined randomly (also 

Malmberg & Annis, 2011). 

 Our simulations also identified several important issues. First, it appears that 

response bias varied between stimulus conditions. This could be better accounted for by 
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models in which the decision parameters were free to vary between stimulus conditions. 

However, it is important to note that the model does a reasonable job accounting for the 

positive sequential dependencies that we observed without appealing to criterion shifts 

either between trials or between stimulus conditions. The model could also be enhanced 

by a more sophisticated model of encoding. The present model was the simplest one 

possible. It assumed that each time an item is repeated, previously unstored features from 

the lexical/semantic trace representing the item are accumulated in the prior episodic 

trace. 

 Finally, in developing the model, we were confronted with the distinction 

between item similarity and frequency similarity. Test items vary in the extent to which 

they are perceptually or semantically similar and they vary to the extent that they were 

presented similar number of times during study. Both factors will influence the 

correlations among test trials. This aspect of recognition memory testing distinguishes it 

from perceptual testing using the absolute identification procedure where only the 

dimension on which the stimuli are judged at test distinguish the class of items tested. 

This difference between recognition testing and absolute identification may be a source 

of the differences in the patterns in sequential dependencies observed in memory and 

perception studies. 
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Table 1. Initial parameter estimates.   

Parameter  Value 

a 0.64 

b 0.72 

c 0.7 

g 0.39 

r 20.44 

s  0.52*  

t 18 

u 0.04 

w 50 

  

*Note: The s parameter was fixed at 0 when it was not varied. 
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Table 2. Bootstrap estimates for g a and s parameters. 

Free 

Parameter Condition Mean SD 

a    

 Objects 0.777 0.009 

 Landscapes 0.567 0.008 

g    

 Objects 0.362 0.003 

 Landscapes 0.409 0.003 

s    

 Objects 0.431 0.034 

  Landscapes 0.495 0.018 
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Table 3.Bootstrap estimates for the a and g parameters. 

Free 

Parameter Condition Value SD 

a    

 Objects 0.889 0.012 

 Landscapes 0.639 0.004 

g    

 Objects 0.421 0.004 

  Landscapes 0.444 0.002 
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Table 4.Bootstrap estimates for the a and s parameters. 

Free 

Parameter Condition Value SD 

a    

 Objects 0.861 0.008 

 Landscapes 0.491 0.012 

s    

 Objects 0.285 0.070 

  Landscapes 0.584 0.008 
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Table 5.Bootstrap estimates for the g and s parameters. 

Free 

Parameter Condition Value SD 

g    

 Objects 0.396 0.003 

 Landscapes 0.442 0.005 

s    

 Objects 0.546 0.014 

  Landscapes 0.593 0.014 
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Table 6.Bootstrap estimates for the a, g, and s parameters. 

Free 

Parameter Condition Value SD 

a    

 Objects 0.993 0.005 

 Landscapes 0.609 0.026 

g    

 Objects 0.453 0.002 

 Landscapes 0.433 0.005 

s    

 Objects 0.362 0.051 

  Landscapes 0.622 0.622 
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Table 7. The negation of the log-likelihood multiplied by 2, G
2
, degrees of freedom (df), Akaiki’s 

Information Criterion (AIC), the Bayesian Information Criterion (BIC), the change in BIC 

(ΔBIC) from the lowest BIC obtained, and the Bayes Factor (B) for each model. 

Free 

Parameters -2LL G
2
 df AIC BIC ΔBIC B w 

a, g, s 16509.34 762.71 163 16513.34 16527.21 0.00 1.00 1.00 

a, s 16540.07 793.44 164 16544.07 16551.98 24.78 0.00 0.00 

a 16726.680 980.05 165 16728.68 16732.64 205.43 0.00 0.00 

a, g 16759.776 1013.143 164 16763.776 16771.688 244.48 0.00 0.00 

g, s 16979.83 1233.19 164 16983.83 16991.74 464.53 0.00 0.00 

g 17042.069 1295.436 165 17044.069 17048.025 520.82 0.00 0.00 

s 17241.946 1495.31 165 17243.95 17247.90 720.69 0.00 0.00 
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Table 8. The the negation of the log-likelihood, G
2
, degrees of freedom (df), Akaiki’s 

Information Criterion (AIC), the Bayesian Information Criterion (BIC), the change in BIC 

(ΔBIC) from the lowest BIC obtained, and the Bayes Factor (B) for each model. This table 

excludes the  a, g, s model. 

Free 

Parameters -2LL G
2
 df AIC BIC ΔBIC B w 

a, s 16540.07 793.44 164 16544.07 16551.98 0.00 1.00 1.00 

a 16726.680 980.05 165 16728.68 16732.64 180.65 0.00 0.00 

a, g 16759.776 1013.143 164 16763.776 16771.688 219.70 0.00 0.00 

g, s 16979.83 1233.19 164 16983.83 16991.74 439.75 0.00 0.00 

g 17042.069 1295.436 165 17044.069 17048.025 17048.02 0.00 0.00 

s 17241.946 1495.31 165 17243.95 17247.90 17247.90 0.00 0.00 
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Figure 1. The probability of value j as a function of j and the geometric distribution 

parameter, g. As g decreases, the mean and variance of the density function increase. 

Thus, representations become less similar and more distinctive as g decreases. 
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Sample Landscape Items 

 

Sample Object Items 

 

 

Figure 2. Sample of items presented to participants in the landscape and object condition. 
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Figure 3. The left panel shows mean percent correct plotted as a function of the number 

of presentations. The middle panel shows the mean Judgment of Frequency as a function 

of the actual stimulus frequency. The right panel plots accuracy (d’i, i+1) as a function the 

number of presentations, i. 
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Figure 4. Mean error on trial n plotted as a function of the previous response and current 

stimulus.  

 



www.manaraa.com

 

46 
 

N um ber of P resentations on Tria l N  - 1

1 2 3 4 5 6

E
rr

o
r 

o
n

 T
ri

a
l 

N

-3

-2

-1

0

1

2

O bjects

N um ber of P resentations on Tria l N  - 1

1 2 3 4 5 6

E
rr

o
r 

o
n

 T
ri

a
l 

N

-3

-2

-1

0

1

2

Landscapes

 

 

Figure 5. Mean error on trial n plotted as a function the previous stimulus and current 

stimulus values.  
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Figure 6. Model fits of the proportion correct as a function of the number of 

presentations. 
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Figure 7. Model fits for accuracy (d’i, i+1 )as a function the number of presentations, i. 
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Figure 8. Model fits for error on current trial as a function of previous response. 
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Figure 9. Model fits for error on current trial as a function of the previous number of 

presentations. 
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